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T h e  Derivation of Joint Probability Distributions of Structure Factors for Space Group P1  

from the Corresponding Distributions for Space Group P1 
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A general procedure is given to obtain joint probability distributions of structure factors for structures in 
space group Pi  from the corresponding distributions for structures in space group P1. Some examples are 
gaven. 

Introduction 

Joint probability distributions of structure factors for 
structures in centrosymmetric space groups and those 
for structures in non-centrosymmetric space groups 
have always been derived separately. In both cases 
first the primitive random variables are specified, then 
the characteristic function is calculated and next, from 
the Fourier transform, the probability distribution is 
obtained. We shall show that once a probability dis- 
tribution for P1 has been calculated, it is simple to 
calculate the corresponding distribution for Pi.  

The procedure 
For equal-atom structures the normalized structure 
factor is given by 

Eh = Ah + iBh, (la) 
where 

N 
Ah = Z N -  1/z cos 2rch. ri, (lb) 

j = l  

N 
Bh = ~ N -  1/2 sin 2rch. rj (lc) 

j = l  

and N is the number of atoms in the unit cell. For 
structures in P1, denote by Pa(X1, . . . ,X , ;  Y1,..., I1,) the 
joint probability distribution of the real parts 
Aal,. . . ,Aa, and the imaginary parts Bal,... ,Ba, of the 
normalized structure factors Ehl,...,Ea,. Then 
P~(X1, . . . ,X , ;  Ix,. . . ,  Y , )dXa. . .dX,dY~. . .dY,  is the joint 
probability that XI <Aat  < X I + d X 1 , . . . , X , < A a . <  
X,,+dX,, ,  ]"1 < B h l  < I"1 +dY1,  ..., Yn < Bhn < Y, + dY,. 

From a structure in P1, we construct a structure in 
P]- by adding to each atom j with position vector rj an 
atom N + j  with position vector rN+j-- - r j .  The nor- 
malized structure factor for such a P1 structure, con- 
taining 2N atoms in the unit cell, is 

2N 
Eh = ~ (2N)-a/Z cos 2rch .r j=l /2Ah,  (2) 

j = l  

where Ah is the real part of the normalized structure 
factor of the P1 structure. For structures in P1, denote 

by PT(S1,..., S,) the joint probability distribution of the 
structure factors Eh a, • •., Eh,. Then P a (S 1,..., S,)dS 1... dS, 
is the joint probability that $1 < Ehl < $1 + dSa,...,S, < 
Eh, < S, +dS,.  This probability can be obtained from 
PI(X1 , . . . ,X , ;  Y~, ..., Y , )dX~. . .dX,dYx. . .dY, .  First we 
integrate with respect to Y1,..., Y,, 

P I ( X  1 , . . . ,Xn)dX1. . .dX, ,  

= f ~ o o ' " f ~ P l ( X a ' " " X " ;  Y1,...,Y,) 
x dX1 . . .dX ,dY1 . . .dY , ,  (3) 

and next, according to (2), we replace the Xi by 
Si/]/2, 

PT( S1, . . .,S,)dS x . . .dS, 

= 2-"/2 P l ( ~ 2 ,  . . ., ~ 2 ) d S  ~ . . .dS,. (4) 

P-I-(Sl,...,Sn) may depend on N, which is half the 
number of atoms in the unit cell. In the following 
examples N in Pa-(S1,..., S,) will be replaced by N/2; 
then N denotes the total number of atoms in the unit 
cell. 

Examples 

(a) The joint probability distribution of the real and 
imaginary part of one structure factor has been cal- 
culated by Wilson (1949). For normalized structure 
factors as given by (1) this distribution is 

PI(X,  Y)= re- a exp ( - X  2 - yz). (5) 

The probability distribution of the real part is obtained 
by integrating with respect to Y, 

Pl(X)=rc -1 exp ( - X  2) e x p ( -  y 2 ) d y  

=re- u2 exp ( - X 2 ) .  (6) 

Next, employing (4), we obtain the probability distribu- 
tion of one normalized structure factor for a P i  struc- 
ture, 
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P-I-(S) = (2n)- 1/2 exp (-½S2), (7) 

in agreement with a result of Wilson (1949). 
(b) As a second example we consider the joint 

probability distribution of three structure factors 
E h l ,  Eh2,  Eh3,  with hi + h2 + h3 = 0. The joint probability 
distribution PI(RI,Rz,R3;~I,CPz, q)3) of the magni- 
tudes and the phases of E~ 1, Ehz and E~3, correct up to 
and including terms of order N-1/2, is given by 

Pi(R1,R2,R3; • 1, (/)2, (~3) 

RIR2R3 
- -  rC 3 exp [ - R 2 - R 2 - R ~  

+2N-1/2R1R2R 3 cos (¢1+¢2+q~3)]  (8) 

[Heinerman (1977a), formula (21) with Q123=N-1/2 
and q123--0]. Using the transformation 

Rv cos Cv = X~, R~ sin 4~ = Y~, (9a) 
for which 

RvdR~d¢,=dX~dY~, (9b) 

we find 

P I ( X I , X 2 , X 3 ;  Y1, g2, ]"3) 

=r~ -3 exp [ - X ~ - X ~ - X ' ~ -  Y~- Y~- y2 

+ 2 N -  l12(XIX2X 3 - - X  1Y2Y3 -- Y1X2 Y3 - I11Y2X3)] • 
(10) 

Integrating with respect to II, gives, correct up to and 
including terms of order N-  1/2, 

P I ( X I , X 2 , X 3 ;  }12, ]13) 

=z~ -5/2 exp [ -  X 2 -  X ~ -  X~3 - y2_ y~ 

+ 2N- I/2(X i X2X3 - X 1112113)]. (11) 

The integrations with respect to Y2 and Y3 are per- 
formed in the same way and lead to 

PI(XI,X2,X3)=x -3/2 e x p ( - X ~ - X ~ - X ~  
+ 2 N -  i/2X1X2X3). (12) 

Next we employ (4) and replace N by N/2. The resulting 
joint probability distribution of three structure factors 
in Pi ,  correct up to and including terms of order 
N -  1/2, is 

pI_(S1,S2,S3)=(2rc )- 3/2 exp [ - ~ $ 1  ~ + S~ + S~) 

+N-1/2SIS2S3] ,  (13) 

from which the well known sign probability of a triple 
product (Cochran & Woolfson, 1955) can be obtained. 

(c) A more complicated case is the joint probability 
distribution of the seven structure factors El,, Ek, El, 
E=, Eh+R, ER+,, El+h, with h+k+l+m=0 [space 
group PI: Giacovazzo (1976); Hauptman (1975); 
for a comparison of their results see Heinerman 
(1977b); space group Pi: Giacovazzo (1975); Green & 
Hauptman (1976)]. Here we use Hauptman's (1975) 
formula for the joint  probability distribution of the 
magnitudes and the phases of the seven structure 
factors: 

Pl(R1,R2, R3,R4, R12,R23, R31; (/) 1, (~)2, (iD3, (]}4., (~ 12, ~) 23, (D 31 ) 

R1R2R3R4R12R23R3 
= 7~ 7 1 exp {-R~-R~-R~-R~,-R~z-R~3-R~, 

+ 2N-  ue[RIRzRI 2 cos (q~l + ~2 - ~12) + R3R,R12 cos (¢3 + 454 + 45x 2) + R2R3R23 cos (4~2 + ~3 - ~23) 

+RxR4R23 cos (¢1 +cP4+¢23)+R1R3R31 cos (4~1 +q53 -¢31)+R2R,R31 cos (¢2 + 4~,+ ~31)] 

- 2 N -  X[R1R3R12 R~3 cos (~1 - 453 - q)lZ + ~23)+ RzR4R12R23 cos (~2 - ~ 4 -  4~12 - 4)23) 

+RIR2R23R31 cos (¢1 - ¢ 2  +¢23 -¢31)+R3R4R23R31 cos (453 - 454- 4~23- ~31) 

+RzR3R31Rlz cos (4~2- ~3 +~31 -¢1z)+R1R4R31R12 cos (¢1 - ¢ 4 -  4~31 - 4~11) 

+ 2RtRzR3R4 cos (4~ + ¢2 + 453 + ~,)]  }, (14) 

which is correct up to and including those terms of order N-1  that depend on the phases. Using the same 
transformation as in the preceding example we find 

Pl(X1,X2,X3,X4,X12,X23,X31; Y1, Y2, ]73, }14, Y12, Y23, I(31) 
= x -  7exp{ _ X12 _ X 2 _ X  2 2  _X4._X12_X23_X212 2 _ y2_  y2_  y2_  y2_  Y212 _ y2 3 _ y 2  

+ 2 N -  1/2[XIX2X12 --t- X3X4.X12 -Jr" X2X3X23 -'}- X1X4.X23 + X1X3X31 -}- X2X4.X31 

+ F ( X l , X i ,  X3 ,X4,X12,X23,X31;  Y1, Y2, }13, Y4, ]112,1(23, Y31)] 

- 2N-  1 [X 1X3X 12X23 + X2X4X, 2X23 + X 1X2X23X31 + X3X4X23X31 + X2X3X31X 12 

--[-X1X4.X31X12-F-2XIX2X3X4 +G(X1,X2,X3,X4,XI2,X23,X31; Y~, Y2, Y3, Y4, Y12, Y23, Y3,)-]}, (15) 
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where F and G are sums of products of three and four 
variables respectively, with all variables to the power 
one. The products of three variables are of the form 
X YY, while there are no two terms that contain the 
same combination of Y's, and those of four variables 
are of the form X X  Y Y or Y Y Y Y. Let us consider the 
integration with respect to II1. Denote by Ytf the terms 
in F depending on I11 and by Y~g the terms in G 
depending on Ya. The integration with respect to II1 
gives 

1 -°° e x p [ - -  Y ~ - t - 2 N - i i 2 y I ( f - N - ' i 2 g ) ] d Y  1 
, ) -  Or3 

=~1/2 e x p ( N - l f 2 ) [ 1  + 0 ( N - 3 / 2 ) ] .  (16) 

The terms in f 2  can  be divided into two groups: (a) 
terms of the form X X  Y Y depending on two different 
Y's; these terms are of the same class as the remaining 
terms of G; (b) terms of the form X 2 y2; these terms are 
independent of the signs of the X's and are neglected 
[they belong to the same class as the terms of order 
N-1  not depending on the phases, which have been 
neglected in (14)]. Continuing in this way for the other 
integrations it is seen that 
Pl(X1,X2,X3,X4,X12,X23,X31 ) is obtained from (15) 
by leaving out the terms depending on the Y's and by 
multiplying by n 7/2. Next, employing (4) and replacing 
N by N/2 we obtain 

Pr(S1,S2,S3,S4,S12,S23,S31) 
=(2n)-7/2 exp [ 1 2 i ~ S  1 + S ~ + S ~ + S~ + S ~ 2 + S ~ 3 + $21) 

+ N -  1/z(s 1S2S12 + $3S4S12 + $eS3S23 

.-Jr-S1S4S23 @ $1S3S 31 @ $2S4S31) 

- N -  1($1S3S 12S23 -t- $2S4S 12S23 

-I- S 1 $2523531 + $3S4S23S31 '{'- $2S3S31S 12 

@ S 1 $4S31S 12 @ 2S 1 $2S3S4)], (17) 

which is correct up to and including those terms of 
order N-1  that depend on the signs of the S's. This 
formula is identical with the one derived by Green & 
Hauptman (1976). 

Concluding remarks 
A general procedure has been given to obtain joint 
probability distributions of structure factors for 
structures in P1 from those for structures in P1. Some 
examples, of increasing complexity, have been given. 
It is stressed that this procedure leads to P1 distribu- 
tions with the same probabilistic background as the 
P1 distributions from which they are derived. 

The idea of considering a P1 structure as the sum of 
two P 1 structures which led to the procedure described 
in this paper was suggested by Dr J. Kroon. The 
author thanks Drs J. Kroon and H. Krabbendam and 
Professor A. F. Peerdeman for stimulating discussions 
and critical reading of the manuscript. 

References 
COCHRAN, W. & WOOLFSON, M. M. (1955). Acta Cryst. 8, 

1-12. 
GIACOVAZZO, C. (1975). Acta Cryst. A 31, 252-259. 
GIACOVAZZO, C. (1976). Acta Cryst. A32, 91-99. 
GIACOVAZZO, C. (1977). Acta Cryst. A33, 50-54. 
GREEN, E. A. & HAUPTMAN, H. (1976). Acta Cryst. A32, 

43-45. 
HAUPTMAN, H. (1975). Acta Cryst. A31, 67i-679. 
HErNERMAN, J. J. L. (1977a). Acta Cryst. A33, 100-106. 
HErNERMAN, J. J. L. (1977b). Submitted to Acta Cryst. A, 

but see footnote to Giacovazzo (1977). 
WILSON, A. J. C. (1949). Acta Cryst. 2, 318-321. 

Acta Cryst. (1977). A33, 109-113 

Approximations for the Calculation of High-Resolution 
Electron-Microscope Images of Thin Films 
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Phase-grating calculations were carried out to calculate lattice images from thin crystals. A method for 
including the effect of chromatic aberration in these calculations is shown and the results are compared 
with experimental images. The improved agreement of calculations with experiment when chromatic 
aberration is taken into account is shown. 

Introduction 
By high-resolution electron microscopy it is possible 
to observe images of crystal structures with a resolu- 
tion of about 3 A. This type of imaging is being carried 

* Present address: Fritz-Haber-Institut der Max-Planck-Gesell- 
schaft, 1 Berlin 33, Faradayweg 4-6, Germany (BRD). 

out in the study of a number of compounds having 
large unit cells such that features inside the unit cells 
can easily be identified. Complex oxide structures as 
well as many mineral structures have been studied. For 
a review of this work see for example Allpress & 
Sanders (1973), Buseck & Iijima (1974) and Cowley & 
Iijima (1976). 


